Nomes que Fizeram História

índice de nomes

Torricelli

página inicial

EVANGELISTA TORRICELLI   (1608 - 1647)


Em 15 de outubro de 1608, nascia em Faenza, Itália, um futuro cientista destinado a desempenhar importante papel no desenvolvimento das idéias de Galileu. Seu nome era Evangelista Torricelli, o responsável pela comprovação do peso do ar e também conhecido como precursor de Newton e Leibniz no desenvolvimento do cálculo infinitesimal.

Torricelli nasceu de uma família humilde e para que, ainda jovem, tivesse a oportunidade de estudar, seu pai o enviou para os cuidados de um tio que era membro superior de uma ordem eclesiástica. Esse foi o seu primeiro professor até que atingisse a idade necessária para ser aceito numa escola de jesuítas. Em 1627, com dezenove anos, inscreveu-se na Universidade de Roma, onde estudou matemática sob a orientação de Benedetto Castelli. Tinha como colegas alguns futuros matemáticos de fama, como Cavalieri e Ricci. Entre o professor e o aluno estabeleceu-se profunda identidade, a ponto de Castelli o propor a Galileu como secretário, época em que Torricelli já havia ganho fama científica em sua universidade. Assim, em 1641 ele dirigiu-se a Florença, onde Galileu passava os últimos anos de sua vida.

Galileu já exercia influência sobre seu jovem secretário muito antes de conhecê-lo pessoalmente, desde a época em que Torricelli estudara o Diálogo sobre os Dois Máximos Sistemas. A permanência na vila de Galileu e a convivência com outros discípulos contribuíram para intensificar essa influência. Em pouco tempo Galileu conseguiu convertê-lo para a causa do método científico como único meio válido para qualquer tipo de estudo.

Entretanto, a morte do mestre poucos meses após a chegada de Torricelli fez com que o grupo de discípulos se dispersasse rapidamente. Torricelli pretendia dirigir-se a Roma, onde possuía amizades e conhecimentos feitos durante o período de seus estudos. Mas a fama que alcançou em Florença, por ocasião de sua breve estada, impediu-o de partir: o Grão-Duque da Toscana o nomeou matemático da corte. Tornava-se, dessa maneira, sucessor de Galileu na cátedra de matemática da Universidade.

Grande parte dos estudos matemáticos de Torricelli não conseguiu sobreviver. Eram, sobretudo, trabalhos efetuados em Roma, em época precedente ao período toscano, quando Torricelli publicou pouca coisa e tudo sob a forma de apontamentos desordenados, freqüentemente incompreensíveis e desconexos. Felizmente, sua correspondência com outros sábios permitiu reconstituir os problemas que atraíam, na época, sua atenção.

Até então os matemáticos haviam, quase exclusivamente, aperfeiçoado e estendido os estudos geométricos dos gregos antigos e a ciência algébrica e trigonométrica dos árabes. O ápice neste trabalho de aperfeiçoamento foi atingido nos séculos XV e XVI. A geometria das figuras elementares como círculo, esfera, cone, e superfícies e volumes gerados pela interseção dessas figuras por meio de planos, tinha sido cuidadosamente estudada e investigada a fundo.

As novas ciências experimentais como física, astronomia, hidráulica e balística, traziam aos estudiosos novos problemas. Torricelli prosseguiu, então, o estudo do movimento dos projéteis, iniciado anos antes por Tartaglia, elevando notavelmente o nível de compreensão sobre o assunto.

Estudou ainda novos problemas de geometria, certas curvas especiais, como a ciclóide, desenhada no espaço por um ponto da periferia de uma roda que gira, sem escorregar, sobre um plano. Torricelli calculou o comprimento do arco da ciclóide e a área compreendida entre a curva e o plano de apoio sobre o qual gira a geratriz. A importância prática desses estudos, na realidade, é muito escassa, mas a procura de soluções levou à descoberta de novos métodos matemáticos, cuja importância se revelou muito grande.

No século XVII difundiram-se métodos derivados do processo de Arquimedes, o qual permitia calcular, de modo bastante aproximado, comprimentos, áreas e volumes de quaisquer corpos geométricos, e que antecipavam o cálculo infinitesimal. Torricelli e Cavalieri foram os primeiros a fazer uso intensivo desses métodos. Conseguiram, assim, enfrentar problemas novos, a ponto de darem uma fisionomia completamente nova à matemática de sua época.

O barômetro, apesar de atualmente ser visto como um instrumento bastante simples, foi considerado na época de sua invenção como uma descoberta de excepcional importância, autêntica conquista da ciência e da filosofia.

Galileu havia demonstrado que muitas das afirmações de Aristóteles eram falsas, abalando todo o fundamento científico deste filósofo grego. Porém, não teve tempo para formar novos princípios científicos sobre seus conceitos e grande parte desse trabalho foi realizado por seus discípulos e seguidores.

Com a experiência do tubo que, preenchido com mercúrio e invertido num recipiente do mesmo líquido, fica cheio só até um nível de cerca de 76 centímetros, Torricelli colocou em novas bases a afirmação de Aristóteles de que a "natureza tem horror ao vácuo". Na verdade, o tubo de mercúrio fica parcialmente cheio não por causa de razões misteriosas que levariam os corpos a preencher os vazios existentes, mas devido à pressão atmosférica. A experiência de Torricelli serviu para comprovar a existência desta pressão e, ao mesmo tempo, mostrar o seu valor como cientista.

Pascal viria mais tarde a aprofundar os estudos sobre o assunto, destruindo por completo as concepções aristotélicas dos opositores de Torricelli. Em uma experiência de 1648, demonstrou a diferença entre a pressão atmosférica ao nível do mar e nas elevações, e declarou: "A natureza tem mais horror ao vácuo sobre as montanhas do que nos vales abaixo? Então, que os discípulos de Aristóteles procurem o que de mais importante há nos escritos de seu mestre e venham explicar tal fato, e se puderem, o tal horror ao vácuo".

Além da invenção do barômetro, Torricelli estudou muitos problemas sobre a mecânica dos fluidos e hidráulica aplicada. Conseguiu encontrar uma regra que permite avaliar a velocidade com que a água sai de um orifício da parede de um recipiente, quando é conhecido o desnível entre o orifício e a superfície do líquido. A descoberta de que essa velocidade é igual à que a água adquiriria, se caísse livremente no vazio de uma altura igual ao desnível, constitui, praticamente, uma conseqüência direta das experiências de Galileu sobre os movimentos sujeitos à ação da gravidade, e também representa uma intuição do princípio da conservação da energia.

Seus numerosos estudos de hidráulica não se limitaram somente à teoria. Deve-se também a ele o famoso estudo para o saneamento do vale do Chiana, contido no trabalho intitulado Sobre o Curso do Chiana, publicado em 1768. A publicação contém ainda, diversas observações sobre o movimento das águas.

Muitos afirmam que Torricelli sempre preferiu fazer com que outras pessoas trabalhassem nas suas experiências quando estas continham manipulações complicadas. De fato, muitas das pesquisas a ele atribuídas foram, na realidade, conduzidas por Viviani. Isso, todavia, não diminui a personalidade do grande matemático, que as idealizou e dirigiu.

Sua preguiça na realização de experiências não abrangia, porém, os trabalhos de ótica. Torricelli sabia construir instrumentos óticos perfeitos, embora, estranhamente, nunca tivesse feito observações astronômicas, muito em voga na época. Ele dizia que a sua residência, na praça de Duomo, não era adequada às observações, uma vez que a cúpula de Brunelleschi (da Igreja de Santa Maria del Fiore) lhe impedia a visão do céu.

Acredita-se que Torricelli tenha aprendido diretamente com Galileu a arte de fabricar lentes. Também havia desenvolvido um sistema para controlar a perfeição das superfícies obtidas. Suas peças se tornaram famosíssimas em todos os círculos científicos da época. Seus instrumentos óticos alcançaram tal perfeição que o tornaram famoso por toda a Europa.

No entanto o método utilizado se perdeu. Em finais de 1647 Torricelli foi atacado por uma febre tifóide que o levou à morte. O segredo da fabricação das lentes veio a ser confiado a Viviani, mas em seguida não houve mais informação alguma a seu respeito.

A maior preocupação de Torricelli, às vésperas da morte, dirigiu-se para os seus manuscritos. O moribundo recomendou a um amigo, o notário Ludovico Serenai, que os enviasse a Castelli, para sua impressão. Castelli, porém, faleceu 35 dias depois. Entre idas e vindas, a edição integral das obras de Torricelli só veio a ser feita em 1919.

Torricelli faleceu em 25 de outubro de 1647.

 

índice de nomes

Torricelli

página inicial